新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(二)
> 各種測量ILs汽化焓對比:表面張力法、熱重法、簡單相加法、 基團貢獻法……(一)
> 堿性淀粉酶的異源表達及分子改造
> Delta-8使用新方法測試CMC,而不是表面張力測試法——方法
> 表面張力儀測量考慮因素表面效應
> 流平劑作用原理、種類、應用性能及與表面張力的關系
> 基于表面張力的開放式微流體平臺,利用微柱重建三維肺部細胞微環(huán)境
> 誘導期測定法研究NaCl的添加對碳酸鋰固-液界面張力等成核動力學參數影響——結果與討論
> 各種表面活性劑性能一覽表
> 不同溫度下水的蒸氣壓、蒸發(fā)焓及表面張力
推薦新聞Info
-
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應條件及表面張力測定(三)
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應條件及表面張力測定(二)
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應條件及表面張力測定(一)
> 座滴法測量玻璃熔體表面張力準確性及影響因素
> 座滴法測量玻璃熔體表面張力裝置、步驟
> 液體表面張力受力分析圖:原理、數學模型、應用與實例
> 各向異性表面張力條件下定向凝固共晶生長形態(tài)穩(wěn)定性(下)
> 各向異性表面張力條件下定向凝固共晶生長形態(tài)穩(wěn)定性(上)
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(三)
> NaOL、HZ組合捕收劑對鋰輝石礦物浮選效果、表面張力影響(二)
中科院江雷及團隊提出鋪展概念及其表征方法
來源:中國科學院理化技術研究所 瀏覽 1588 次 發(fā)布時間:2022-06-20
近日,中國科學院院士、中科院理化技術研究所研究員江雷和研究員田野團隊在Accounts of Chemical Research上,以Bioinspired superspreading surfaces:from essential mechanism to application為題,發(fā)表綜述論文,系統(tǒng)提出了超鋪展概念及其表征方法,綜述了超鋪展表面的本質機理及研究進展,總結了超鋪展的應用領域,展望了領域內遺留的重大挑戰(zhàn)及發(fā)展方向。
根據1805年提出的楊氏方程,熱力學穩(wěn)態(tài)接觸角被廣泛用于表征表面浸潤性,并根據其定義宏觀穩(wěn)態(tài)接觸角小于5°的表面為超親液表面。但該表征方法在描述液體的動力學鋪展過程時,顯示出較大局限性。
江雷團隊過去已經對液體動態(tài)鋪展過程進行了研究,并將其應用于薄膜制備、分離、散熱等領域。研究中發(fā)現,表面的性質主要由液體的動力學動態(tài)鋪展速度主導,而不是熱力學上的超親性。在此基礎上,該綜述正式提出,在描述液體動力學鋪展過程時,應該使用超鋪展(Superspreading)這一概念,而不是經典的超親液概念(Superhydrophilic/Superlyophilic),并建議使用超鋪展時間(Superspreading time,ST,一滴液滴從接觸表面到完全鋪展至接觸角達到0°所需要的時間)或者鋪展半徑隨時間變化曲線(Superspreading Radius versus Spreading Time,SRST)來定量表征這些表面的動力學鋪展性質。科研人員傾向于使用體積為2μL的液滴,此時液體的尺寸小于其毛細長度,其主要動力學行為受表面張力驅動而忽略重力的影響。
文章介紹了經過億萬年進化后自然界中選擇留下的各種優(yōu)異超鋪展表面,包括動物角膜、宣紙等。自然界中超鋪展表面的優(yōu)異性能直接決定了其正常作用的發(fā)揮甚至其生理功能。這些自然表面均使用了微納復合的多尺度結構來實現超鋪展性能;從分子尺度的表面自組裝水分子結構引起的新的親疏水界線(65°)到納米結構和微觀結構在超鋪展過程中的宏觀各自作用,綜述了超鋪展本質機理研究的最新進展;進一步總結了常用的超鋪展表面制備方法、介紹了超鋪展表面的應用領域,提出了超鋪展體系,總結了該領域存在的挑戰(zhàn)。
超鋪展領域的研究處于起步階段,盡管近年來取得了快速發(fā)展,但仍存在大量問題:機理方面,表面水分子的結構與傳統(tǒng)熱力學中使用的固-氣、固-液表面張力的聯系仍十分模糊;如何從動力學角度理解納米結構對超鋪展閾值的影響成為難題。應用方面,超鋪展表面的長期穩(wěn)定性仍成為瓶頸,尤其對于暴露在空氣中的表面;大面積超鋪展表面的制備成本較高,限制了其大規(guī)模應用。
圖1.超鋪展概念總覽
圖2.自然界中的超鋪展表面
圖3.超鋪展體系
圖4.新的親疏水界線
圖5.納米結構在超鋪展中的作用
圖6.微米結構在超鋪展中的作用
圖7.超鋪展表面用于薄膜制備